This lab is similar to the previous lab, except now instead of printing out the bounding box coordinates, you can visualize these bounding boxes on top of the image!
# For running inference on the TF-Hub module.
import tensorflow as tf
import tensorflow_hub as hub
# For downloading the image.
import matplotlib.pyplot as plt
import tempfile
from six.moves.urllib.request import urlopen
from six import BytesIO
# For drawing onto the image.
import numpy as np
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont
from PIL import ImageOps
# For measuring the inference time.
import time
# Print Tensorflow version
print(tf.__version__)
# Check available GPU devices.
print("The following GPU devices are available: %s" % tf.test.gpu_device_name())
2.13.0
The following GPU devices are available: /device:GPU:0
As in the previous lab, you can choose an object detection module. Here are two that we’ve selected for you:
# you can switch the commented lines here to pick the other model
# ssd mobilenet version 2
module_handle = "https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1"
# You can choose inception resnet version 2 instead
#module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1"
Next, you’ll load the model specified by the module_handle
.
model = hub.load(module_handle)
As before, you can check the available signatures using .signature.keys()
# take a look at the available signatures for this particular model
model.signatures.keys()
KeysView(_SignatureMap({'default': <ConcreteFunction pruned(images) at 0x7AC7A03DB8E0>}))
Please choose the ‘default’ signature for your object detector.
detector = model.signatures['default']
As you saw in the previous lab, this function downloads an image specified by a given “url”, pre-processes it, and then saves it to disk.
display=True
.def display_image(image):
"""
Displays an image inside the notebook.
This is used by download_and_resize_image()
"""
fig = plt.figure(figsize=(20, 15))
plt.grid(False)
plt.imshow(image)
def download_and_resize_image(url, new_width=256, new_height=256, display=False):
'''
Fetches an image online, resizes it and saves it locally.
Args:
url (string) -- link to the image
new_width (int) -- size in pixels used for resizing the width of the image
new_height (int) -- size in pixels used for resizing the length of the image
Returns:
(string) -- path to the saved image
'''
# create a temporary file ending with ".jpg"
_, filename = tempfile.mkstemp(suffix=".jpg")
# opens the given URL
response = urlopen(url)
# reads the image fetched from the URL
image_data = response.read()
# puts the image data in memory buffer
image_data = BytesIO(image_data)
# opens the image
pil_image = Image.open(image_data)
# resizes the image. will crop if aspect ratio is different.
pil_image = ImageOps.fit(pil_image, (new_width, new_height), Image.ANTIALIAS)
# converts to the RGB colorspace
pil_image_rgb = pil_image.convert("RGB")
# saves the image to the temporary file created earlier
pil_image_rgb.save(filename, format="JPEG", quality=90)
print("Image downloaded to %s." % filename)
if display:
display_image(pil_image)
return filename
Load a public image from Open Images v4, save locally, and display.
# By Heiko Gorski, Source: https://commons.wikimedia.org/wiki/File:Naxos_Taverna.jpg
image_url = "https://upload.wikimedia.org/wikipedia/commons/6/60/Naxos_Taverna.jpg" #@param
downloaded_image_path = download_and_resize_image(image_url, 1280, 856, True)
<ipython-input-6-8fc4b081c4c7>:41: DeprecationWarning: ANTIALIAS is deprecated and will be removed in Pillow 10 (2023-07-01). Use LANCZOS or Resampling.LANCZOS instead.
pil_image = ImageOps.fit(pil_image, (new_width, new_height), Image.ANTIALIAS)
Image downloaded to /tmp/tmpowpjb0fn.jpg.
To build on what you saw in the previous lab, you can now visualize the predicted bounding boxes, overlaid on top of the image.
draw_boxes
to do this. It will use draw_bounding_box_on_image
to draw the bounding boxes.def draw_bounding_box_on_image(image,
ymin,
xmin,
ymax,
xmax,
color,
font,
thickness=4,
display_str_list=()):
"""
Adds a bounding box to an image.
Args:
image -- the image object
ymin -- bounding box coordinate
xmin -- bounding box coordinate
ymax -- bounding box coordinate
xmax -- bounding box coordinate
color -- color for the bounding box edges
font -- font for class label
thickness -- edge thickness of the bounding box
display_str_list -- class labels for each object detected
Returns:
No return. The function modifies the `image` argument
that gets passed into this function
"""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
# scale the bounding box coordinates to the height and width of the image
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
# define the four edges of the detection box
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
(left, top)],
width=thickness,
fill=color)
# If the total height of the display strings added to the top of the bounding
# box exceeds the top of the image, stack the strings below the bounding box
# instead of above.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
# Each display_str has a top and bottom margin of 0.05x.
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
if top > total_display_str_height:
text_bottom = top
else:
text_bottom = top + total_display_str_height
# Reverse list and print from bottom to top.
for display_str in display_str_list[::-1]:
text_width, text_height = font.getsize(display_str)
margin = np.ceil(0.05 * text_height)
draw.rectangle([(left, text_bottom - text_height - 2 * margin),
(left + text_width, text_bottom)],
fill=color)
draw.text((left + margin, text_bottom - text_height - margin),
display_str,
fill="black",
font=font)
text_bottom -= text_height - 2 * margin
def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.1):
"""
Overlay labeled boxes on an image with formatted scores and label names.
Args:
image -- the image as a numpy array
boxes -- list of detection boxes
class_names -- list of classes for each detected object
scores -- numbers showing the model's confidence in detecting that object
max_boxes -- maximum detection boxes to overlay on the image (default is 10)
min_score -- minimum score required to display a bounding box
Returns:
image -- the image after detection boxes and classes are overlaid on the original image.
"""
colors = list(ImageColor.colormap.values())
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Regular.ttf",
25)
except IOError:
print("Font not found, using default font.")
font = ImageFont.load_default()
for i in range(min(boxes.shape[0], max_boxes)):
# only display detection boxes that have the minimum score or higher
if scores[i] >= min_score:
ymin, xmin, ymax, xmax = tuple(boxes[i])
display_str = "{}: {}%".format(class_names[i].decode("ascii"),
int(100 * scores[i]))
color = colors[hash(class_names[i]) % len(colors)]
image_pil = Image.fromarray(np.uint8(image)).convert("RGB")
# draw one bounding box and overlay the class labels onto the image
draw_bounding_box_on_image(image_pil,
ymin,
xmin,
ymax,
xmax,
color,
font,
display_str_list=[display_str])
np.copyto(image, np.array(image_pil))
return image
This function will take in the object detection model detector
and the path to a sample image, then use this model to detect objects.
draw_boxes
to draw the predicted bounding boxes.def load_img(path):
'''
Loads a JPEG image and converts it to a tensor.
Args:
path (string) -- path to a locally saved JPEG image
Returns:
(tensor) -- an image tensor
'''
# read the file
img = tf.io.read_file(path)
# convert to a tensor
img = tf.image.decode_jpeg(img, channels=3)
return img
def run_detector(detector, path):
'''
Runs inference on a local file using an object detection model.
Args:
detector (model) -- an object detection model loaded from TF Hub
path (string) -- path to an image saved locally
'''
# load an image tensor from a local file path
img = load_img(path)
# add a batch dimension in front of the tensor
converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...]
# run inference using the model
start_time = time.time()
result = detector(converted_img)
end_time = time.time()
# save the results in a dictionary
result = {key:value.numpy() for key,value in result.items()}
# print results
print("Found %d objects." % len(result["detection_scores"]))
print("Inference time: ", end_time-start_time)
# draw predicted boxes over the image
image_with_boxes = draw_boxes(
img.numpy(), result["detection_boxes"],
result["detection_class_entities"], result["detection_scores"])
# display the image
display_image(image_with_boxes)
run_detector(detector, downloaded_image_path)
Found 100 objects.
Inference time: 16.967748165130615
<ipython-input-8-8be463631219>:47: DeprecationWarning: getsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use getbbox or getlength instead.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
<ipython-input-8-8be463631219>:58: DeprecationWarning: getsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use getbbox or getlength instead.
text_width, text_height = font.getsize(display_str)
Perform inference on some additional images of your choice and check how long inference takes.
image_urls = [
# Source: https://commons.wikimedia.org/wiki/File:The_Coleoptera_of_the_British_islands_(Plate_125)_(8592917784).jpg
"https://upload.wikimedia.org/wikipedia/commons/1/1b/The_Coleoptera_of_the_British_islands_%28Plate_125%29_%288592917784%29.jpg",
# By Américo Toledano, Source: https://commons.wikimedia.org/wiki/File:Biblioteca_Maim%C3%B3nides,_Campus_Universitario_de_Rabanales_007.jpg
"https://upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Biblioteca_Maim%C3%B3nides%2C_Campus_Universitario_de_Rabanales_007.jpg/1024px-Biblioteca_Maim%C3%B3nides%2C_Campus_Universitario_de_Rabanales_007.jpg",
# Source: https://commons.wikimedia.org/wiki/File:The_smaller_British_birds_(8053836633).jpg
"https://upload.wikimedia.org/wikipedia/commons/0/09/The_smaller_British_birds_%288053836633%29.jpg",
]
def detect_img(image_url):
start_time = time.time()
image_path = download_and_resize_image(image_url, 640, 480)
run_detector(detector, image_path)
end_time = time.time()
print("Inference time:",end_time-start_time)
detect_img(image_urls[0])
<ipython-input-6-8fc4b081c4c7>:41: DeprecationWarning: ANTIALIAS is deprecated and will be removed in Pillow 10 (2023-07-01). Use LANCZOS or Resampling.LANCZOS instead.
pil_image = ImageOps.fit(pil_image, (new_width, new_height), Image.ANTIALIAS)
Image downloaded to /tmp/tmpp_5g8shf.jpg.
Found 100 objects.
Inference time: 0.27014923095703125
Inference time: 0.569594144821167
<ipython-input-8-8be463631219>:47: DeprecationWarning: getsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use getbbox or getlength instead.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
<ipython-input-8-8be463631219>:58: DeprecationWarning: getsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use getbbox or getlength instead.
text_width, text_height = font.getsize(display_str)
detect_img(image_urls[1])
<ipython-input-6-8fc4b081c4c7>:41: DeprecationWarning: ANTIALIAS is deprecated and will be removed in Pillow 10 (2023-07-01). Use LANCZOS or Resampling.LANCZOS instead.
pil_image = ImageOps.fit(pil_image, (new_width, new_height), Image.ANTIALIAS)
<ipython-input-8-8be463631219>:47: DeprecationWarning: getsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use getbbox or getlength instead.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
<ipython-input-8-8be463631219>:58: DeprecationWarning: getsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use getbbox or getlength instead.
text_width, text_height = font.getsize(display_str)
Image downloaded to /tmp/tmp93boqwyl.jpg.
Found 100 objects.
Inference time: 0.1690387725830078
Inference time: 0.4425625801086426
detect_img(image_urls[2])
<ipython-input-6-8fc4b081c4c7>:41: DeprecationWarning: ANTIALIAS is deprecated and will be removed in Pillow 10 (2023-07-01). Use LANCZOS or Resampling.LANCZOS instead.
pil_image = ImageOps.fit(pil_image, (new_width, new_height), Image.ANTIALIAS)
Image downloaded to /tmp/tmp4ye1x0vv.jpg.
Found 100 objects.
Inference time: 0.13587403297424316
Inference time: 0.4783637523651123
<ipython-input-8-8be463631219>:47: DeprecationWarning: getsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use getbbox or getlength instead.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
<ipython-input-8-8be463631219>:58: DeprecationWarning: getsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use getbbox or getlength instead.
text_width, text_height = font.getsize(display_str)