Welcome to your week 4 assignment (part 1 of 2)! Previously you trained a 2-layer Neural Network with a single hidden layer. This week, you will build a deep neural network with as many layers as you want!
By the end of this assignment, you’ll be able to:
Notation:
Let’s get started!
Before submitting your assignment to the AutoGrader, please make sure you are not doing the following:
print
statement(s) in the assignment.If you do any of the following, you will get something like, Grader not found
(or similarly unexpected) error upon submitting your assignment. Before asking for help/debugging the errors in your assignment, check for these first. If this is the case, and you don’t remember the changes you have made, you can get a fresh copy of the assignment by following these instructions.
First, import all the packages you’ll need during this assignment.
import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases import *
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
from public_tests import *
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
%load_ext autoreload
%autoreload 2
np.random.seed(1)
To build your neural network, you’ll be implementing several “helper functions.” These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network.
Each small helper function will have detailed instructions to walk you through the necessary steps. Here’s an outline of the steps in this assignment:
Note:
For every forward function, there is a corresponding backward function. This is why at every step of your forward module you will be storing some values in a cache. These cached values are useful for computing gradients.
In the backpropagation module, you can then use the cache to calculate the gradients. Don’t worry, this assignment will show you exactly how to carry out each of these steps!
You will write two helper functions to initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one generalizes this initialization process to $L$ layers.
Create and initialize the parameters of the 2-layer neural network.
Instructions:
np.random.randn(d0, d1, ..., dn) * 0.01
with the correct shape. The documentation for np.random.randnnp.zeros(shape)
. The documentation for np.zeros# GRADED FUNCTION: initialize_parameters
def initialize_parameters(n_x, n_h, n_y):
"""
Argument:
n_x -- size of the input layer
n_h -- size of the hidden layer
n_y -- size of the output layer
Returns:
parameters -- python dictionary containing your parameters:
W1 -- weight matrix of shape (n_h, n_x)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
b2 -- bias vector of shape (n_y, 1)
"""
np.random.seed(1)
#(≈ 4 lines of code)
# W1 = ...
# b1 = ...
# W2 = ...
# b2 = ...
# YOUR CODE STARTS HERE
W1 = np.random.randn(n_h, n_x) * .01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h) * .01
b2 = np.zeros((n_y, 1))
# YOUR CODE ENDS HERE
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
parameters = initialize_parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
initialize_parameters_test(initialize_parameters)
W1 = [[ 0.01624345 -0.00611756 -0.00528172]
[-0.01072969 0.00865408 -0.02301539]]
b1 = [[0.]
[0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[0.]]
[92m All tests passed.
Expected output
W1 = [[ 0.01624345 -0.00611756 -0.00528172]
[-0.01072969 0.00865408 -0.02301539]]
b1 = [[0.]
[0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[0.]]
The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep
function, you should make sure that your dimensions match between each layer. Recall that $n^{[l]}$ is the number of units in layer $l$. For example, if the size of your input $X$ is $(12288, 209)$ (with $m=209$ examples) then:
Shape of W | Shape of b | Activation | Shape of Activation | |
Layer 1 | $(n^{[1]},12288)$ | $(n^{[1]},1)$ | $Z^{[1]} = W^{[1]} X + b^{[1]} $ | $(n^{[1]},209)$ |
Layer 2 | $(n^{[2]}, n^{[1]})$ | $(n^{[2]},1)$ | $Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]}$ | $(n^{[2]}, 209)$ |
$\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
Layer L-1 | $(n^{[L-1]}, n^{[L-2]})$ | $(n^{[L-1]}, 1)$ | $Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]}$ | $(n^{[L-1]}, 209)$ |
Layer L | $(n^{[L]}, n^{[L-1]})$ | $(n^{[L]}, 1)$ | $Z^{[L]} = W^{[L]} A^{[L-1]} + b^{[L]}$ | $(n^{[L]}, 209)$ |
Remember that when you compute $W X + b$ in python, it carries out broadcasting. For example, if:
$$ W = \begin{bmatrix} w_{00} & w_{01} & w_{02} \ w_{10} & w_{11} & w_{12} \ w_{20} & w_{21} & w_{22} \end{bmatrix};;; X = \begin{bmatrix} x_{00} & x_{01} & x_{02} \ x_{10} & x_{11} & x_{12} \ x_{20} & x_{21} & x_{22} \end{bmatrix} ;;; b =\begin{bmatrix} b_0 \ b_1 \ b_2 \end{bmatrix}\tag{2}$$
Then $WX + b$ will be:
$$ WX + b = \begin{bmatrix} (w_{00}x_{00} + w_{01}x_{10} + w_{02}x_{20}) + b_0 & (w_{00}x_{01} + w_{01}x_{11} + w_{02}x_{21}) + b_0 & \cdots \ (w_{10}x_{00} + w_{11}x_{10} + w_{12}x_{20}) + b_1 & (w_{10}x_{01} + w_{11}x_{11} + w_{12}x_{21}) + b_1 & \cdots \ (w_{20}x_{00} + w_{21}x_{10} + w_{22}x_{20}) + b_2 & (w_{20}x_{01} + w_{21}x_{11} + w_{22}x_{21}) + b_2 & \cdots \end{bmatrix}\tag{3} $$
Implement initialization for an L-layer Neural Network.
Instructions:
np.random.randn(d0, d1, ..., dn) * 0.01
.np.zeros(shape)
.layer_dims
. For example, the layer_dims
for last week’s Planar Data classification model would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. This means W1
’s shape was (4,2), b1
was (4,1), W2
was (1,4) and b2
was (1,1). Now you will generalize this to $L$ layers! if L == 1:
parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
# GRADED FUNCTION: initialize_parameters_deep
def initialize_parameters_deep(layer_dims):
"""
Arguments:
layer_dims -- python array (list) containing the dimensions of each layer in our network
Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
bl -- bias vector of shape (layer_dims[l], 1)
"""
np.random.seed(3)
parameters = {}
L = len(layer_dims) # number of layers in the network
for l in range(1, L):
#(≈ 2 lines of code)
# parameters['W' + str(l)] = ...
# parameters['b' + str(l)] = ...
# YOUR CODE STARTS HERE
parameters["W" + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * .01
parameters["b" + str(l)] = np.zeros((layer_dims[l], 1))
# YOUR CODE ENDS HERE
assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))
assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
return parameters
parameters = initialize_parameters_deep([5,4,3])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
initialize_parameters_deep_test(initialize_parameters_deep)
W1 = [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388]
[-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
[-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034]
[-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]
b1 = [[0.]
[0.]
[0.]
[0.]]
W2 = [[-0.01185047 -0.0020565 0.01486148 0.00236716]
[-0.01023785 -0.00712993 0.00625245 -0.00160513]
[-0.00768836 -0.00230031 0.00745056 0.01976111]]
b2 = [[0.]
[0.]
[0.]]
[92m All tests passed.
Expected output
W1 = [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388]
[-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
[-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034]
[-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]
b1 = [[0.]
[0.]
[0.]
[0.]]
W2 = [[-0.01185047 -0.0020565 0.01486148 0.00236716]
[-0.01023785 -0.00712993 0.00625245 -0.00160513]
[-0.00768836 -0.00230031 0.00745056 0.01976111]]
b2 = [[0.]
[0.]
[0.]]
Now that you have initialized your parameters, you can do the forward propagation module. Start by implementing some basic functions that you can use again later when implementing the model. Now, you’ll complete three functions in this order:
The linear forward module (vectorized over all the examples) computes the following equations:
$$Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}\tag{4}$$
where $A^{[0]} = X$.
Build the linear part of forward propagation.
Reminder:
The mathematical representation of this unit is $Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}$. You may also find np.dot()
useful. If your dimensions don’t match, printing W.shape
may help.
# GRADED FUNCTION: linear_forward
def linear_forward(A, W, b):
"""
Implement the linear part of a layer's forward propagation.
Arguments:
A -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
Returns:
Z -- the input of the activation function, also called pre-activation parameter
cache -- a python tuple containing "A", "W" and "b" ; stored for computing the backward pass efficiently
"""
#(≈ 1 line of code)
# Z = ...
# YOUR CODE STARTS HERE
Z = np.dot(W, A) + b
# YOUR CODE ENDS HERE
cache = (A, W, b)
return Z, cache
t_A, t_W, t_b = linear_forward_test_case()
t_Z, t_linear_cache = linear_forward(t_A, t_W, t_b)
print("Z = " + str(t_Z))
linear_forward_test(linear_forward)
Z = [[ 3.26295337 -1.23429987]]
[92m All tests passed.
Expected output
Z = [[ 3.26295337 -1.23429987]]
In this notebook, you will use two activation functions:
sigmoid
function which returns two items: the activation value “a
” and a “cache
” that contains “Z
” (it’s what we will feed in to the corresponding backward function). To use it you could just call:A, activation_cache = sigmoid(Z)
relu
function. This function returns two items: the activation value “A
” and a “cache
” that contains “Z
” (it’s what you’ll feed in to the corresponding backward function). To use it you could just call:A, activation_cache = relu(Z)
For added convenience, you’re going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you’ll implement a function that does the LINEAR forward step, followed by an ACTIVATION forward step.
Implement the forward propagation of the LINEAR->ACTIVATION layer. Mathematical relation is: $A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} +b^{[l]})$ where the activation “g” can be sigmoid() or relu(). Use linear_forward()
and the correct activation function.
# GRADED FUNCTION: linear_activation_forward
def linear_activation_forward(A_prev, W, b, activation):
"""
Implement the forward propagation for the LINEAR->ACTIVATION layer
Arguments:
A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
Returns:
A -- the output of the activation function, also called the post-activation value
cache -- a python tuple containing "linear_cache" and "activation_cache";
stored for computing the backward pass efficiently
"""
if activation == "sigmoid":
#(≈ 2 lines of code)
# Z, linear_cache = ...
# A, activation_cache = ...
# YOUR CODE STARTS HERE
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)
# YOUR CODE ENDS HERE
elif activation == "relu":
#(≈ 2 lines of code)
# Z, linear_cache = ...
# A, activation_cache = ...
# YOUR CODE STARTS HERE
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)
# YOUR CODE ENDS HERE
cache = (linear_cache, activation_cache)
return A, cache
t_A_prev, t_W, t_b = linear_activation_forward_test_case()
t_A, t_linear_activation_cache = linear_activation_forward(t_A_prev, t_W, t_b, activation = "sigmoid")
print("With sigmoid: A = " + str(t_A))
t_A, t_linear_activation_cache = linear_activation_forward(t_A_prev, t_W, t_b, activation = "relu")
print("With ReLU: A = " + str(t_A))
linear_activation_forward_test(linear_activation_forward)
With sigmoid: A = [[0.96890023 0.11013289]]
With ReLU: A = [[3.43896131 0. ]]
[92m All tests passed.
Expected output
With sigmoid: A = [[0.96890023 0.11013289]]
With ReLU: A = [[3.43896131 0. ]]
Note: In deep learning, the “[LINEAR->ACTIVATION]” computation is counted as a single layer in the neural network, not two layers.
For even more convenience when implementing the $L$-layer Neural Net, you will need a function that replicates the previous one (linear_activation_forward
with RELU) $L-1$ times, then follows that with one linear_activation_forward
with SIGMOID.
Implement the forward propagation of the above model.
Instructions: In the code below, the variable AL
will denote $A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]} A^{[L-1]} + b^{[L]})$. (This is sometimes also called Yhat
, i.e., this is $\hat{Y}$.)
Hints:
c
to a list
, you can use list.append(c)
.# GRADED FUNCTION: L_model_forward
def L_model_forward(X, parameters):
"""
Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
Arguments:
X -- data, numpy array of shape (input size, number of examples)
parameters -- output of initialize_parameters_deep()
Returns:
AL -- activation value from the output (last) layer
caches -- list of caches containing:
every cache of linear_activation_forward() (there are L of them, indexed from 0 to L-1)
"""
caches = []
A = X
L = len(parameters) // 2 # number of layers in the neural network
# Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
# The for loop starts at 1 because layer 0 is the input
for l in range(1, L):
A_prev = A
#(≈ 2 lines of code)
# A, cache = ...
# caches ...
# YOUR CODE STARTS HERE
A, cache = linear_activation_forward(
A_prev = A_prev,
W = parameters["W" + str(l)],
b = parameters["b" + str(l)],
activation = "relu",
)
caches.append(cache)
# YOUR CODE ENDS HERE
# Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
#(≈ 2 lines of code)
# AL, cache = ...
# caches ...
# YOUR CODE STARTS HERE
AL, cache = linear_activation_forward(
A_prev = A,
W = parameters["W" + str(L)],
b = parameters["b" + str(L)],
activation = "sigmoid"
)
caches.append(cache)
# YOUR CODE ENDS HERE
return AL, caches
t_X, t_parameters = L_model_forward_test_case_2hidden()
t_AL, t_caches = L_model_forward(t_X, t_parameters)
print("AL = " + str(t_AL))
L_model_forward_test(L_model_forward)
AL = [[0.03921668 0.70498921 0.19734387 0.04728177]]
[92m All tests passed.
Expected output
AL = [[0.03921668 0.70498921 0.19734387 0.04728177]]
Awesome! You’ve implemented a full forward propagation that takes the input X and outputs a row vector $A^{[L]}$ containing your predictions. It also records all intermediate values in “caches”. Using $A^{[L]}$, you can compute the cost of your predictions.
Now you can implement forward and backward propagation! You need to compute the cost, in order to check whether your model is actually learning.
Compute the cross-entropy cost $J$, using the following formula: $$-\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{L}\right)) \tag{7}$$
# GRADED FUNCTION: compute_cost
def compute_cost(AL, Y):
"""
Implement the cost function defined by equation (7).
Arguments:
AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
Returns:
cost -- cross-entropy cost
"""
m = Y.shape[1]
# Compute loss from aL and y.
# (≈ 1 lines of code)
# cost = ...
# YOUR CODE STARTS HERE
cost = -np.sum(Y * np.log(AL) + (1 - Y) * np.log(1 - AL)) / m
# YOUR CODE ENDS HERE
cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
return cost
t_Y, t_AL = compute_cost_test_case()
t_cost = compute_cost(t_AL, t_Y)
print("Cost: " + str(t_cost))
compute_cost_test(compute_cost)
Cost: 0.2797765635793423
[92m All tests passed.
Expected Output:
cost | 0.2797765635793422 |
Just as you did for the forward propagation, you’ll implement helper functions for backpropagation. Remember that backpropagation is used to calculate the gradient of the loss function with respect to the parameters.
Reminder:
Now, similarly to forward propagation, you’re going to build the backward propagation in three steps:
For the next exercise, you will need to remember that:
b
is a matrix(np.ndarray) with 1 column and n rows, i.e: b = [[1.0], [2.0]] (remember that b
is a constant)A = np.array([[1, 2], [3, 4]])
print('axis=1 and keepdims=True')
print(np.sum(A, axis=1, keepdims=True))
print('axis=1 and keepdims=False')
print(np.sum(A, axis=1, keepdims=False))
print('axis=0 and keepdims=True')
print(np.sum(A, axis=0, keepdims=True))
print('axis=0 and keepdims=False')
print(np.sum(A, axis=0, keepdims=False))
axis=1 and keepdims=True
[[3]
[7]]
axis=1 and keepdims=False
[3 7]
axis=0 and keepdims=True
[[4 6]]
axis=0 and keepdims=False
[4 6]
For layer $l$, the linear part is: $Z^{[l]} = W^{[l]} A^{[l-1]} + b^{[l]}$ (followed by an activation).
Suppose you have already calculated the derivative $dZ^{[l]} = \frac{\partial \mathcal{L} }{\partial Z^{[l]}}$. You want to get $(dW^{[l]}, db^{[l]}, dA^{[l-1]})$.
The three outputs $(dW^{[l]}, db^{[l]}, dA^{[l-1]})$ are computed using the input $dZ^{[l]}$.
Here are the formulas you need: $$ dW^{[l]} = \frac{\partial \mathcal{J} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T} \tag{8}$$ $$ db^{[l]} = \frac{\partial \mathcal{J} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{l}\tag{9}$$ $$ dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} \tag{10}$$
$A^{[l-1] T}$ is the transpose of $A^{[l-1]}$.
Use the 3 formulas above to implement linear_backward()
.
Hint:
A
using A.T
or A.transpose()
# GRADED FUNCTION: linear_backward
def linear_backward(dZ, cache):
"""
Implement the linear portion of backward propagation for a single layer (layer l)
Arguments:
dZ -- Gradient of the cost with respect to the linear output (of current layer l)
cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
A_prev, W, b = cache
m = A_prev.shape[1]
### START CODE HERE ### (≈ 3 lines of code)
# dW = ...
# db = ... sum by the rows of dZ with keepdims=True
# dA_prev = ...
# YOUR CODE STARTS HERE
dW = np.dot(dZ, A_prev.T) / m
db = np.sum(dZ, axis = 1, keepdims = True) / m
dA_prev = np.dot(W.T, dZ)
# YOUR CODE ENDS HERE
return dA_prev, dW, db
t_dZ, t_linear_cache = linear_backward_test_case()
t_dA_prev, t_dW, t_db = linear_backward(t_dZ, t_linear_cache)
print("dA_prev: " + str(t_dA_prev))
print("dW: " + str(t_dW))
print("db: " + str(t_db))
linear_backward_test(linear_backward)
dA_prev: [[-1.15171336 0.06718465 -0.3204696 2.09812712]
[ 0.60345879 -3.72508701 5.81700741 -3.84326836]
[-0.4319552 -1.30987417 1.72354705 0.05070578]
[-0.38981415 0.60811244 -1.25938424 1.47191593]
[-2.52214926 2.67882552 -0.67947465 1.48119548]]
dW: [[ 0.07313866 -0.0976715 -0.87585828 0.73763362 0.00785716]
[ 0.85508818 0.37530413 -0.59912655 0.71278189 -0.58931808]
[ 0.97913304 -0.24376494 -0.08839671 0.55151192 -0.10290907]]
db: [[-0.14713786]
[-0.11313155]
[-0.13209101]]
[92m All tests passed.
Expected Output:
dA_prev: [[-1.15171336 0.06718465 -0.3204696 2.09812712]
[ 0.60345879 -3.72508701 5.81700741 -3.84326836]
[-0.4319552 -1.30987417 1.72354705 0.05070578]
[-0.38981415 0.60811244 -1.25938424 1.47191593]
[-2.52214926 2.67882552 -0.67947465 1.48119548]]
dW: [[ 0.07313866 -0.0976715 -0.87585828 0.73763362 0.00785716]
[ 0.85508818 0.37530413 -0.59912655 0.71278189 -0.58931808]
[ 0.97913304 -0.24376494 -0.08839671 0.55151192 -0.10290907]]
db: [[-0.14713786]
[-0.11313155]
[-0.13209101]]
Next, you will create a function that merges the two helper functions: linear_backward
and the backward step for the activation linear_activation_backward
.
To help you implement linear_activation_backward
, two backward functions have been provided:
sigmoid_backward
: Implements the backward propagation for SIGMOID unit. You can call it as follows:dZ = sigmoid_backward(dA, activation_cache)
relu_backward
: Implements the backward propagation for RELU unit. You can call it as follows:dZ = relu_backward(dA, activation_cache)
If $g(.)$ is the activation function,
sigmoid_backward
and relu_backward
compute $$dZ^{[l]} = dA^{[l]} * g’(Z^{[l]}). \tag{11}$$
Implement the backpropagation for the LINEAR->ACTIVATION layer.
# GRADED FUNCTION: linear_activation_backward
def linear_activation_backward(dA, cache, activation):
"""
Implement the backward propagation for the LINEAR->ACTIVATION layer.
Arguments:
dA -- post-activation gradient for current layer l
cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
linear_cache, activation_cache = cache
if activation == "relu":
#(≈ 2 lines of code)
# dZ = ...
# dA_prev, dW, db = ...
# YOUR CODE STARTS HERE
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
# YOUR CODE ENDS HERE
elif activation == "sigmoid":
#(≈ 2 lines of code)
# dZ = ...
# dA_prev, dW, db = ...
# YOUR CODE STARTS HERE
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
# YOUR CODE ENDS HERE
return dA_prev, dW, db
t_dAL, t_linear_activation_cache = linear_activation_backward_test_case()
t_dA_prev, t_dW, t_db = linear_activation_backward(t_dAL, t_linear_activation_cache, activation = "sigmoid")
print("With sigmoid: dA_prev = " + str(t_dA_prev))
print("With sigmoid: dW = " + str(t_dW))
print("With sigmoid: db = " + str(t_db))
t_dA_prev, t_dW, t_db = linear_activation_backward(t_dAL, t_linear_activation_cache, activation = "relu")
print("With relu: dA_prev = " + str(t_dA_prev))
print("With relu: dW = " + str(t_dW))
print("With relu: db = " + str(t_db))
linear_activation_backward_test(linear_activation_backward)
With sigmoid: dA_prev = [[ 0.11017994 0.01105339]
[ 0.09466817 0.00949723]
[-0.05743092 -0.00576154]]
With sigmoid: dW = [[ 0.10266786 0.09778551 -0.01968084]]
With sigmoid: db = [[-0.05729622]]
With relu: dA_prev = [[ 0.44090989 0. ]
[ 0.37883606 0. ]
[-0.2298228 0. ]]
With relu: dW = [[ 0.44513824 0.37371418 -0.10478989]]
With relu: db = [[-0.20837892]]
[92m All tests passed.
Expected output:
With sigmoid: dA_prev = [[ 0.11017994 0.01105339]
[ 0.09466817 0.00949723]
[-0.05743092 -0.00576154]]
With sigmoid: dW = [[ 0.10266786 0.09778551 -0.01968084]]
With sigmoid: db = [[-0.05729622]]
With relu: dA_prev = [[ 0.44090989 0. ]
[ 0.37883606 0. ]
[-0.2298228 0. ]]
With relu: dW = [[ 0.44513824 0.37371418 -0.10478989]]
With relu: db = [[-0.20837892]]
Now you will implement the backward function for the whole network!
Recall that when you implemented the L_model_forward
function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you’ll use those variables to compute the gradients. Therefore, in the L_model_backward
function, you’ll iterate through all the hidden layers backward, starting from layer $L$. On each step, you will use the cached values for layer $l$ to backpropagate through layer $l$. Figure 5 below shows the backward pass.
Initializing backpropagation:
To backpropagate through this network, you know that the output is:
$A^{[L]} = \sigma(Z^{[L]})$. Your code thus needs to compute dAL
$= \frac{\partial \mathcal{L}}{\partial A^{[L]}}$.
To do so, use this formula (derived using calculus which, again, you don’t need in-depth knowledge of!):
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL
You can then use this post-activation gradient dAL
to keep going backward. As seen in Figure 5, you can now feed in dAL
into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function).
After that, you will have to use a for
loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula :
$$grads[“dW” + str(l)] = dW^{[l]}\tag{15} $$
For example, for $l=3$ this would store $dW^{[l]}$ in grads["dW3"]
.
Implement backpropagation for the [LINEAR->RELU] $\times$ (L-1) -> LINEAR -> SIGMOID model.
# GRADED FUNCTION: L_model_backward
def L_model_backward(AL, Y, caches):
"""
Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
Arguments:
AL -- probability vector, output of the forward propagation (L_model_forward())
Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
caches -- list of caches containing:
every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
Returns:
grads -- A dictionary with the gradients
grads["dA" + str(l)] = ...
grads["dW" + str(l)] = ...
grads["db" + str(l)] = ...
"""
grads = {}
L = len(caches) # the number of layers
m = AL.shape[1]
Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
# Initializing the backpropagation
#(1 line of code)
# dAL = ...
# YOUR CODE STARTS HERE
dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
# YOUR CODE ENDS HERE
# Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"]
#(approx. 5 lines)
# current_cache = ...
# dA_prev_temp, dW_temp, db_temp = ...
# grads["dA" + str(L-1)] = ...
# grads["dW" + str(L)] = ...
# grads["db" + str(L)] = ...
# YOUR CODE STARTS HERE
current_cache = caches[L - 1]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(dAL, current_cache, "sigmoid")
grads["dA" + str(L - 1)] = dA_prev_temp
grads["dW" + str(L)] = dW_temp
grads["db" + str(L)] = db_temp
# YOUR CODE ENDS HERE
# Loop from l=L-2 to l=0
for l in reversed(range(L-1)):
# lth layer: (RELU -> LINEAR) gradients.
# Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)]
#(approx. 5 lines)
# current_cache = ...
# dA_prev_temp, dW_temp, db_temp = ...
# grads["dA" + str(l)] = ...
# grads["dW" + str(l + 1)] = ...
# grads["db" + str(l + 1)] = ...
# YOUR CODE STARTS HERE
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, "relu")
grads["dA" + str(l)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
# YOUR CODE ENDS HERE
return grads
t_AL, t_Y_assess, t_caches = L_model_backward_test_case()
grads = L_model_backward(t_AL, t_Y_assess, t_caches)
print("dA0 = " + str(grads['dA0']))
print("dA1 = " + str(grads['dA1']))
print("dW1 = " + str(grads['dW1']))
print("dW2 = " + str(grads['dW2']))
print("db1 = " + str(grads['db1']))
print("db2 = " + str(grads['db2']))
L_model_backward_test(L_model_backward)
dA0 = [[ 0. 0.52257901]
[ 0. -0.3269206 ]
[ 0. -0.32070404]
[ 0. -0.74079187]]
dA1 = [[ 0.12913162 -0.44014127]
[-0.14175655 0.48317296]
[ 0.01663708 -0.05670698]]
dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167]
[0. 0. 0. 0. ]
[0.05283652 0.01005865 0.01777766 0.0135308 ]]
dW2 = [[-0.39202432 -0.13325855 -0.04601089]]
db1 = [[-0.22007063]
[ 0. ]
[-0.02835349]]
db2 = [[0.15187861]]
[92m All tests passed.
Expected output:
dA0 = [[ 0. 0.52257901]
[ 0. -0.3269206 ]
[ 0. -0.32070404]
[ 0. -0.74079187]]
dA1 = [[ 0.12913162 -0.44014127]
[-0.14175655 0.48317296]
[ 0.01663708 -0.05670698]]
dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167]
[0. 0. 0. 0. ]
[0.05283652 0.01005865 0.01777766 0.0135308 ]]
dW2 = [[-0.39202432 -0.13325855 -0.04601089]]
db1 = [[-0.22007063]
[ 0. ]
[-0.02835349]]
db2 = [[0.15187861]]
In this section, you’ll update the parameters of the model, using gradient descent:
$$ W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{16}$$ $$ b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{17}$$
where $\alpha$ is the learning rate.
After computing the updated parameters, store them in the parameters dictionary.
Implement update_parameters()
to update your parameters using gradient descent.
Instructions: Update parameters using gradient descent on every $W^{[l]}$ and $b^{[l]}$ for $l = 1, 2, …, L$.
# GRADED FUNCTION: update_parameters
def update_parameters(params, grads, learning_rate):
"""
Update parameters using gradient descent
Arguments:
params -- python dictionary containing your parameters
grads -- python dictionary containing your gradients, output of L_model_backward
Returns:
parameters -- python dictionary containing your updated parameters
parameters["W" + str(l)] = ...
parameters["b" + str(l)] = ...
"""
parameters = params.copy()
L = len(parameters) // 2 # number of layers in the neural network
# Update rule for each parameter. Use a for loop.
#(≈ 2 lines of code)
for l in range(L):
# parameters["W" + str(l+1)] = ...
# parameters["b" + str(l+1)] = ...
# YOUR CODE STARTS HERE
parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
# YOUR CODE ENDS HERE
return parameters
t_parameters, grads = update_parameters_test_case()
t_parameters = update_parameters(t_parameters, grads, 0.1)
print ("W1 = "+ str(t_parameters["W1"]))
print ("b1 = "+ str(t_parameters["b1"]))
print ("W2 = "+ str(t_parameters["W2"]))
print ("b2 = "+ str(t_parameters["b2"]))
update_parameters_test(update_parameters)
W1 = [[-0.59562069 -0.09991781 -2.14584584 1.82662008]
[-1.76569676 -0.80627147 0.51115557 -1.18258802]
[-1.0535704 -0.86128581 0.68284052 2.20374577]]
b1 = [[-0.04659241]
[-1.28888275]
[ 0.53405496]]
W2 = [[-0.55569196 0.0354055 1.32964895]]
b2 = [[-0.84610769]]
[92m All tests passed.
Expected output:
W1 = [[-0.59562069 -0.09991781 -2.14584584 1.82662008]
[-1.76569676 -0.80627147 0.51115557 -1.18258802]
[-1.0535704 -0.86128581 0.68284052 2.20374577]]
b1 = [[-0.04659241]
[-1.28888275]
[ 0.53405496]]
W2 = [[-0.55569196 0.0354055 1.32964895]]
b2 = [[-0.84610769]]
You’ve just implemented all the functions required for building a deep neural network, including:
This was indeed a long assignment, but the next part of the assignment is easier. ;)
In the next assignment, you’ll be putting all these together to build two models:
You will in fact use these models to classify cat vs non-cat images! (Meow!) Great work and see you next time.