Coursera

Building your Deep Neural Network: Step by Step

Welcome to your week 4 assignment (part 1 of 2)! Previously you trained a 2-layer Neural Network with a single hidden layer. This week, you will build a deep neural network with as many layers as you want!

By the end of this assignment, you’ll be able to:

Notation:

Let’s get started!

Important Note on Submission to the AutoGrader

Before submitting your assignment to the AutoGrader, please make sure you are not doing the following:

  1. You have not added any extra print statement(s) in the assignment.
  2. You have not added any extra code cell(s) in the assignment.
  3. You have not changed any of the function parameters.
  4. You are not using any global variables inside your graded exercises. Unless specifically instructed to do so, please refrain from it and use the local variables instead.
  5. You are not changing the assignment code where it is not required, like creating extra variables.

If you do any of the following, you will get something like, Grader not found (or similarly unexpected) error upon submitting your assignment. Before asking for help/debugging the errors in your assignment, check for these first. If this is the case, and you don’t remember the changes you have made, you can get a fresh copy of the assignment by following these instructions.

Table of Contents

1 - Packages

First, import all the packages you’ll need during this assignment.

import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases import *
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
from public_tests import *

%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

%load_ext autoreload
%autoreload 2

np.random.seed(1)

2 - Outline

To build your neural network, you’ll be implementing several “helper functions.” These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network.

Each small helper function will have detailed instructions to walk you through the necessary steps. Here’s an outline of the steps in this assignment:

Figure 1

Note:

For every forward function, there is a corresponding backward function. This is why at every step of your forward module you will be storing some values in a cache. These cached values are useful for computing gradients.

In the backpropagation module, you can then use the cache to calculate the gradients. Don’t worry, this assignment will show you exactly how to carry out each of these steps!

3 - Initialization

You will write two helper functions to initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one generalizes this initialization process to $L$ layers.

3.1 - 2-layer Neural Network

Exercise 1 - initialize_parameters

Create and initialize the parameters of the 2-layer neural network.

Instructions:

# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer
    
    Returns:
    parameters -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """
    
    np.random.seed(1)
    
    #(≈ 4 lines of code)
    # W1 = ...
    # b1 = ...
    # W2 = ...
    # b2 = ...
    # YOUR CODE STARTS HERE
    W1 = np.random.randn(n_h, n_x) * .01
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h) * .01
    b2 = np.zeros((n_y, 1))
    
    # YOUR CODE ENDS HERE
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters    
parameters = initialize_parameters(3,2,1)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

initialize_parameters_test(initialize_parameters)
W1 = [[ 0.01624345 -0.00611756 -0.00528172]
 [-0.01072969  0.00865408 -0.02301539]]
b1 = [[0.]
 [0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[0.]]
 All tests passed.

Expected output

W1 = [[ 0.01624345 -0.00611756 -0.00528172]
 [-0.01072969  0.00865408 -0.02301539]]
b1 = [[0.]
 [0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[0.]]

3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep function, you should make sure that your dimensions match between each layer. Recall that $n^{[l]}$ is the number of units in layer $l$. For example, if the size of your input $X$ is $(12288, 209)$ (with $m=209$ examples) then:

Shape of W Shape of b Activation Shape of Activation
Layer 1 $(n^{[1]},12288)$ $(n^{[1]},1)$ $Z^{[1]} = W^{[1]} X + b^{[1]} $ $(n^{[1]},209)$
Layer 2 $(n^{[2]}, n^{[1]})$ $(n^{[2]},1)$ $Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]}$ $(n^{[2]}, 209)$
$\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
Layer L-1 $(n^{[L-1]}, n^{[L-2]})$ $(n^{[L-1]}, 1)$ $Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]}$ $(n^{[L-1]}, 209)$
Layer L $(n^{[L]}, n^{[L-1]})$ $(n^{[L]}, 1)$ $Z^{[L]} = W^{[L]} A^{[L-1]} + b^{[L]}$ $(n^{[L]}, 209)$

Remember that when you compute $W X + b$ in python, it carries out broadcasting. For example, if:

$$ W = \begin{bmatrix} w_{00} & w_{01} & w_{02} \ w_{10} & w_{11} & w_{12} \ w_{20} & w_{21} & w_{22} \end{bmatrix};;; X = \begin{bmatrix} x_{00} & x_{01} & x_{02} \ x_{10} & x_{11} & x_{12} \ x_{20} & x_{21} & x_{22} \end{bmatrix} ;;; b =\begin{bmatrix} b_0 \ b_1 \ b_2 \end{bmatrix}\tag{2}$$

Then $WX + b$ will be:

$$ WX + b = \begin{bmatrix} (w_{00}x_{00} + w_{01}x_{10} + w_{02}x_{20}) + b_0 & (w_{00}x_{01} + w_{01}x_{11} + w_{02}x_{21}) + b_0 & \cdots \ (w_{10}x_{00} + w_{11}x_{10} + w_{12}x_{20}) + b_1 & (w_{10}x_{01} + w_{11}x_{11} + w_{12}x_{21}) + b_1 & \cdots \ (w_{20}x_{00} + w_{21}x_{10} + w_{22}x_{20}) + b_2 & (w_{20}x_{01} + w_{21}x_{11} + w_{22}x_{21}) + b_2 & \cdots \end{bmatrix}\tag{3} $$

Exercise 2 - initialize_parameters_deep

Implement initialization for an L-layer Neural Network.

Instructions:

    if L == 1:
        parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
        parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
# GRADED FUNCTION: initialize_parameters_deep

def initialize_parameters_deep(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    bl -- bias vector of shape (layer_dims[l], 1)
    """
    
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims) # number of layers in the network

    for l in range(1, L):
        #(≈ 2 lines of code)
        # parameters['W' + str(l)] = ...
        # parameters['b' + str(l)] = ...
        # YOUR CODE STARTS HERE
        parameters["W" + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * .01
        parameters["b" + str(l)] = np.zeros((layer_dims[l], 1))
        
        # YOUR CODE ENDS HERE
        
        assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))
        assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))

        
    return parameters
parameters = initialize_parameters_deep([5,4,3])

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

initialize_parameters_deep_test(initialize_parameters_deep)
W1 = [[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388]
 [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
 [-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034]
 [-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[-0.01185047 -0.0020565   0.01486148  0.00236716]
 [-0.01023785 -0.00712993  0.00625245 -0.00160513]
 [-0.00768836 -0.00230031  0.00745056  0.01976111]]
b2 = [[0.]
 [0.]
 [0.]]
 All tests passed.

Expected output

W1 = [[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388]
 [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
 [-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034]
 [-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[-0.01185047 -0.0020565   0.01486148  0.00236716]
 [-0.01023785 -0.00712993  0.00625245 -0.00160513]
 [-0.00768836 -0.00230031  0.00745056  0.01976111]]
b2 = [[0.]
 [0.]
 [0.]]

4 - Forward Propagation Module

4.1 - Linear Forward

Now that you have initialized your parameters, you can do the forward propagation module. Start by implementing some basic functions that you can use again later when implementing the model. Now, you’ll complete three functions in this order:

The linear forward module (vectorized over all the examples) computes the following equations:

$$Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}\tag{4}$$

where $A^{[0]} = X$.

Exercise 3 - linear_forward

Build the linear part of forward propagation.

Reminder: The mathematical representation of this unit is $Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}$. You may also find np.dot() useful. If your dimensions don’t match, printing W.shape may help.

# GRADED FUNCTION: linear_forward

def linear_forward(A, W, b):
    """
    Implement the linear part of a layer's forward propagation.

    Arguments:
    A -- activations from previous layer (or input data): (size of previous layer, number of examples)
    W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
    b -- bias vector, numpy array of shape (size of the current layer, 1)

    Returns:
    Z -- the input of the activation function, also called pre-activation parameter 
    cache -- a python tuple containing "A", "W" and "b" ; stored for computing the backward pass efficiently
    """
    
    #(≈ 1 line of code)
    # Z = ...
    # YOUR CODE STARTS HERE
    Z = np.dot(W, A) + b
    
    # YOUR CODE ENDS HERE
    cache = (A, W, b)
    
    return Z, cache
t_A, t_W, t_b = linear_forward_test_case()
t_Z, t_linear_cache = linear_forward(t_A, t_W, t_b)
print("Z = " + str(t_Z))

linear_forward_test(linear_forward)
Z = [[ 3.26295337 -1.23429987]]
 All tests passed.

Expected output

Z = [[ 3.26295337 -1.23429987]]

4.2 - Linear-Activation Forward

In this notebook, you will use two activation functions:

A, activation_cache = sigmoid(Z)
A, activation_cache = relu(Z)

For added convenience, you’re going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you’ll implement a function that does the LINEAR forward step, followed by an ACTIVATION forward step.

Exercise 4 - linear_activation_forward

Implement the forward propagation of the LINEAR->ACTIVATION layer. Mathematical relation is: $A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} +b^{[l]})$ where the activation “g” can be sigmoid() or relu(). Use linear_forward() and the correct activation function.

# GRADED FUNCTION: linear_activation_forward

def linear_activation_forward(A_prev, W, b, activation):
    """
    Implement the forward propagation for the LINEAR->ACTIVATION layer

    Arguments:
    A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
    W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
    b -- bias vector, numpy array of shape (size of the current layer, 1)
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

    Returns:
    A -- the output of the activation function, also called the post-activation value 
    cache -- a python tuple containing "linear_cache" and "activation_cache";
             stored for computing the backward pass efficiently
    """
    
    if activation == "sigmoid":
        #(≈ 2 lines of code)
        # Z, linear_cache = ...
        # A, activation_cache = ...
        # YOUR CODE STARTS HERE
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)        
        # YOUR CODE ENDS HERE
    
    elif activation == "relu":
        #(≈ 2 lines of code)
        # Z, linear_cache = ...
        # A, activation_cache = ...
        # YOUR CODE STARTS HERE
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = relu(Z)        
        
        # YOUR CODE ENDS HERE
    cache = (linear_cache, activation_cache)

    return A, cache
t_A_prev, t_W, t_b = linear_activation_forward_test_case()

t_A, t_linear_activation_cache = linear_activation_forward(t_A_prev, t_W, t_b, activation = "sigmoid")
print("With sigmoid: A = " + str(t_A))

t_A, t_linear_activation_cache = linear_activation_forward(t_A_prev, t_W, t_b, activation = "relu")
print("With ReLU: A = " + str(t_A))

linear_activation_forward_test(linear_activation_forward)
With sigmoid: A = [[0.96890023 0.11013289]]
With ReLU: A = [[3.43896131 0.        ]]
 All tests passed.

Expected output

With sigmoid: A = [[0.96890023 0.11013289]]
With ReLU: A = [[3.43896131 0.        ]]

Note: In deep learning, the “[LINEAR->ACTIVATION]” computation is counted as a single layer in the neural network, not two layers.

4.3 - L-Layer Model

For even more convenience when implementing the $L$-layer Neural Net, you will need a function that replicates the previous one (linear_activation_forward with RELU) $L-1$ times, then follows that with one linear_activation_forward with SIGMOID.

Figure 2 : *[LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID* model

Exercise 5 - L_model_forward

Implement the forward propagation of the above model.

Instructions: In the code below, the variable AL will denote $A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]} A^{[L-1]} + b^{[L]})$. (This is sometimes also called Yhat, i.e., this is $\hat{Y}$.)

Hints:

# GRADED FUNCTION: L_model_forward

def L_model_forward(X, parameters):
    """
    Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
    
    Arguments:
    X -- data, numpy array of shape (input size, number of examples)
    parameters -- output of initialize_parameters_deep()
    
    Returns:
    AL -- activation value from the output (last) layer
    caches -- list of caches containing:
                every cache of linear_activation_forward() (there are L of them, indexed from 0 to L-1)
    """

    caches = []
    A = X
    L = len(parameters) // 2                  # number of layers in the neural network
    
    # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
    # The for loop starts at 1 because layer 0 is the input
    for l in range(1, L):
        A_prev = A 
        #(≈ 2 lines of code)
        # A, cache = ...
        # caches ...
        # YOUR CODE STARTS HERE
        A, cache = linear_activation_forward(
            A_prev = A_prev,
            W = parameters["W" + str(l)],
            b = parameters["b" + str(l)],
            activation = "relu",
        )
        caches.append(cache)
        
        # YOUR CODE ENDS HERE
    
    # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
    #(≈ 2 lines of code)
    # AL, cache = ...
    # caches ...
    # YOUR CODE STARTS HERE
    AL, cache = linear_activation_forward(
        A_prev = A,
        W = parameters["W" + str(L)],
        b = parameters["b" + str(L)],
        activation = "sigmoid"
    )
    caches.append(cache)
    # YOUR CODE ENDS HERE
          
    return AL, caches
t_X, t_parameters = L_model_forward_test_case_2hidden()
t_AL, t_caches = L_model_forward(t_X, t_parameters)

print("AL = " + str(t_AL))

L_model_forward_test(L_model_forward)
AL = [[0.03921668 0.70498921 0.19734387 0.04728177]]
 All tests passed.

Expected output

AL = [[0.03921668 0.70498921 0.19734387 0.04728177]]

Awesome! You’ve implemented a full forward propagation that takes the input X and outputs a row vector $A^{[L]}$ containing your predictions. It also records all intermediate values in “caches”. Using $A^{[L]}$, you can compute the cost of your predictions.

5 - Cost Function

Now you can implement forward and backward propagation! You need to compute the cost, in order to check whether your model is actually learning.

Exercise 6 - compute_cost

Compute the cross-entropy cost $J$, using the following formula: $$-\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{L}\right)) \tag{7}$$

# GRADED FUNCTION: compute_cost

def compute_cost(AL, Y):
    """
    Implement the cost function defined by equation (7).

    Arguments:
    AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
    Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)

    Returns:
    cost -- cross-entropy cost
    """
    
    m = Y.shape[1]

    # Compute loss from aL and y.
    # (≈ 1 lines of code)
    # cost = ...
    # YOUR CODE STARTS HERE
    cost = -np.sum(Y * np.log(AL) + (1 - Y) * np.log(1 - AL)) / m
    
    # YOUR CODE ENDS HERE
    
    cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).

    
    return cost
t_Y, t_AL = compute_cost_test_case()
t_cost = compute_cost(t_AL, t_Y)

print("Cost: " + str(t_cost))

compute_cost_test(compute_cost)
Cost: 0.2797765635793423
 All tests passed.

Expected Output:

cost 0.2797765635793422

6 - Backward Propagation Module

Just as you did for the forward propagation, you’ll implement helper functions for backpropagation. Remember that backpropagation is used to calculate the gradient of the loss function with respect to the parameters.

Reminder:

Figure 3: Forward and Backward propagation for LINEAR->RELU->LINEAR->SIGMOID
The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.

Now, similarly to forward propagation, you’re going to build the backward propagation in three steps:

  1. LINEAR backward
  2. LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation
  3. [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID backward (whole model)

For the next exercise, you will need to remember that:

A = np.array([[1, 2], [3, 4]])

print('axis=1 and keepdims=True')
print(np.sum(A, axis=1, keepdims=True))
print('axis=1 and keepdims=False')
print(np.sum(A, axis=1, keepdims=False))
print('axis=0 and keepdims=True')
print(np.sum(A, axis=0, keepdims=True))
print('axis=0 and keepdims=False')
print(np.sum(A, axis=0, keepdims=False))
axis=1 and keepdims=True
[[3]
 [7]]
axis=1 and keepdims=False
[3 7]
axis=0 and keepdims=True
[[4 6]]
axis=0 and keepdims=False
[4 6]

6.1 - Linear Backward

For layer $l$, the linear part is: $Z^{[l]} = W^{[l]} A^{[l-1]} + b^{[l]}$ (followed by an activation).

Suppose you have already calculated the derivative $dZ^{[l]} = \frac{\partial \mathcal{L} }{\partial Z^{[l]}}$. You want to get $(dW^{[l]}, db^{[l]}, dA^{[l-1]})$.

Figure 4

The three outputs $(dW^{[l]}, db^{[l]}, dA^{[l-1]})$ are computed using the input $dZ^{[l]}$.

Here are the formulas you need: $$ dW^{[l]} = \frac{\partial \mathcal{J} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T} \tag{8}$$ $$ db^{[l]} = \frac{\partial \mathcal{J} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{l}\tag{9}$$ $$ dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} \tag{10}$$

$A^{[l-1] T}$ is the transpose of $A^{[l-1]}$.

Exercise 7 - linear_backward

Use the 3 formulas above to implement linear_backward().

Hint:

# GRADED FUNCTION: linear_backward

def linear_backward(dZ, cache):
    """
    Implement the linear portion of backward propagation for a single layer (layer l)

    Arguments:
    dZ -- Gradient of the cost with respect to the linear output (of current layer l)
    cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer

    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    A_prev, W, b = cache
    m = A_prev.shape[1]

    ### START CODE HERE ### (≈ 3 lines of code)
    # dW = ...
    # db = ... sum by the rows of dZ with keepdims=True
    # dA_prev = ...
    # YOUR CODE STARTS HERE
    dW = np.dot(dZ, A_prev.T) / m
    db = np.sum(dZ, axis = 1, keepdims = True) / m
    dA_prev = np.dot(W.T, dZ)
    
    # YOUR CODE ENDS HERE
    
    return dA_prev, dW, db
t_dZ, t_linear_cache = linear_backward_test_case()
t_dA_prev, t_dW, t_db = linear_backward(t_dZ, t_linear_cache)

print("dA_prev: " + str(t_dA_prev))
print("dW: " + str(t_dW))
print("db: " + str(t_db))

linear_backward_test(linear_backward)
dA_prev: [[-1.15171336  0.06718465 -0.3204696   2.09812712]
 [ 0.60345879 -3.72508701  5.81700741 -3.84326836]
 [-0.4319552  -1.30987417  1.72354705  0.05070578]
 [-0.38981415  0.60811244 -1.25938424  1.47191593]
 [-2.52214926  2.67882552 -0.67947465  1.48119548]]
dW: [[ 0.07313866 -0.0976715  -0.87585828  0.73763362  0.00785716]
 [ 0.85508818  0.37530413 -0.59912655  0.71278189 -0.58931808]
 [ 0.97913304 -0.24376494 -0.08839671  0.55151192 -0.10290907]]
db: [[-0.14713786]
 [-0.11313155]
 [-0.13209101]]
 All tests passed.

Expected Output:

dA_prev: [[-1.15171336  0.06718465 -0.3204696   2.09812712]
 [ 0.60345879 -3.72508701  5.81700741 -3.84326836]
 [-0.4319552  -1.30987417  1.72354705  0.05070578]
 [-0.38981415  0.60811244 -1.25938424  1.47191593]
 [-2.52214926  2.67882552 -0.67947465  1.48119548]]
dW: [[ 0.07313866 -0.0976715  -0.87585828  0.73763362  0.00785716]
 [ 0.85508818  0.37530413 -0.59912655  0.71278189 -0.58931808]
 [ 0.97913304 -0.24376494 -0.08839671  0.55151192 -0.10290907]]
db: [[-0.14713786]
 [-0.11313155]
 [-0.13209101]]

6.2 - Linear-Activation Backward

Next, you will create a function that merges the two helper functions: linear_backward and the backward step for the activation linear_activation_backward.

To help you implement linear_activation_backward, two backward functions have been provided:

dZ = sigmoid_backward(dA, activation_cache)
dZ = relu_backward(dA, activation_cache)

If $g(.)$ is the activation function, sigmoid_backward and relu_backward compute $$dZ^{[l]} = dA^{[l]} * g’(Z^{[l]}). \tag{11}$$

Exercise 8 - linear_activation_backward

Implement the backpropagation for the LINEAR->ACTIVATION layer.

# GRADED FUNCTION: linear_activation_backward

def linear_activation_backward(dA, cache, activation):
    """
    Implement the backward propagation for the LINEAR->ACTIVATION layer.
    
    Arguments:
    dA -- post-activation gradient for current layer l 
    cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    linear_cache, activation_cache = cache
    
    if activation == "relu":
        #(≈ 2 lines of code)
        # dZ =  ...
        # dA_prev, dW, db =  ...
        # YOUR CODE STARTS HERE
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        
        # YOUR CODE ENDS HERE
        
    elif activation == "sigmoid":
        #(≈ 2 lines of code)
        # dZ =  ...
        # dA_prev, dW, db =  ...
        # YOUR CODE STARTS HERE
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        
        # YOUR CODE ENDS HERE
    
    return dA_prev, dW, db
t_dAL, t_linear_activation_cache = linear_activation_backward_test_case()

t_dA_prev, t_dW, t_db = linear_activation_backward(t_dAL, t_linear_activation_cache, activation = "sigmoid")
print("With sigmoid: dA_prev = " + str(t_dA_prev))
print("With sigmoid: dW = " + str(t_dW))
print("With sigmoid: db = " + str(t_db))

t_dA_prev, t_dW, t_db = linear_activation_backward(t_dAL, t_linear_activation_cache, activation = "relu")
print("With relu: dA_prev = " + str(t_dA_prev))
print("With relu: dW = " + str(t_dW))
print("With relu: db = " + str(t_db))

linear_activation_backward_test(linear_activation_backward)
With sigmoid: dA_prev = [[ 0.11017994  0.01105339]
 [ 0.09466817  0.00949723]
 [-0.05743092 -0.00576154]]
With sigmoid: dW = [[ 0.10266786  0.09778551 -0.01968084]]
With sigmoid: db = [[-0.05729622]]
With relu: dA_prev = [[ 0.44090989  0.        ]
 [ 0.37883606  0.        ]
 [-0.2298228   0.        ]]
With relu: dW = [[ 0.44513824  0.37371418 -0.10478989]]
With relu: db = [[-0.20837892]]
 All tests passed.

Expected output:

With sigmoid: dA_prev = [[ 0.11017994  0.01105339]
 [ 0.09466817  0.00949723]
 [-0.05743092 -0.00576154]]
With sigmoid: dW = [[ 0.10266786  0.09778551 -0.01968084]]
With sigmoid: db = [[-0.05729622]]
With relu: dA_prev = [[ 0.44090989  0.        ]
 [ 0.37883606  0.        ]
 [-0.2298228   0.        ]]
With relu: dW = [[ 0.44513824  0.37371418 -0.10478989]]
With relu: db = [[-0.20837892]]

6.3 - L-Model Backward

Now you will implement the backward function for the whole network!

Recall that when you implemented the L_model_forward function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you’ll use those variables to compute the gradients. Therefore, in the L_model_backward function, you’ll iterate through all the hidden layers backward, starting from layer $L$. On each step, you will use the cached values for layer $l$ to backpropagate through layer $l$. Figure 5 below shows the backward pass.

Figure 5: Backward pass

Initializing backpropagation:

To backpropagate through this network, you know that the output is: $A^{[L]} = \sigma(Z^{[L]})$. Your code thus needs to compute dAL $= \frac{\partial \mathcal{L}}{\partial A^{[L]}}$. To do so, use this formula (derived using calculus which, again, you don’t need in-depth knowledge of!):

dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL

You can then use this post-activation gradient dAL to keep going backward. As seen in Figure 5, you can now feed in dAL into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function).

After that, you will have to use a for loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula :

$$grads[“dW” + str(l)] = dW^{[l]}\tag{15} $$

For example, for $l=3$ this would store $dW^{[l]}$ in grads["dW3"].

Exercise 9 - L_model_backward

Implement backpropagation for the [LINEAR->RELU] $\times$ (L-1) -> LINEAR -> SIGMOID model.

# GRADED FUNCTION: L_model_backward

def L_model_backward(AL, Y, caches):
    """
    Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
    
    Arguments:
    AL -- probability vector, output of the forward propagation (L_model_forward())
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
    caches -- list of caches containing:
                every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
    
    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(l)] = ... 
             grads["dW" + str(l)] = ...
             grads["db" + str(l)] = ... 
    """
    grads = {}
    L = len(caches) # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    
    # Initializing the backpropagation
    #(1 line of code)
    # dAL = ...
    # YOUR CODE STARTS HERE
    dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    
    # YOUR CODE ENDS HERE
    
    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"]
    #(approx. 5 lines)
    # current_cache = ...
    # dA_prev_temp, dW_temp, db_temp = ...
    # grads["dA" + str(L-1)] = ...
    # grads["dW" + str(L)] = ...
    # grads["db" + str(L)] = ...
    # YOUR CODE STARTS HERE
    current_cache = caches[L - 1]
    dA_prev_temp, dW_temp, db_temp = linear_activation_backward(dAL, current_cache, "sigmoid")
    grads["dA" + str(L - 1)] = dA_prev_temp
    grads["dW" + str(L)] = dW_temp
    grads["db" + str(L)] = db_temp
    
    # YOUR CODE ENDS HERE
    
    # Loop from l=L-2 to l=0
    for l in reversed(range(L-1)):
        # lth layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
        #(approx. 5 lines)
        # current_cache = ...
        # dA_prev_temp, dW_temp, db_temp = ...
        # grads["dA" + str(l)] = ...
        # grads["dW" + str(l + 1)] = ...
        # grads["db" + str(l + 1)] = ...
        # YOUR CODE STARTS HERE
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, "relu")
        grads["dA" + str(l)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
        
        # YOUR CODE ENDS HERE

    return grads
t_AL, t_Y_assess, t_caches = L_model_backward_test_case()
grads = L_model_backward(t_AL, t_Y_assess, t_caches)

print("dA0 = " + str(grads['dA0']))
print("dA1 = " + str(grads['dA1']))
print("dW1 = " + str(grads['dW1']))
print("dW2 = " + str(grads['dW2']))
print("db1 = " + str(grads['db1']))
print("db2 = " + str(grads['db2']))

L_model_backward_test(L_model_backward)
dA0 = [[ 0.          0.52257901]
 [ 0.         -0.3269206 ]
 [ 0.         -0.32070404]
 [ 0.         -0.74079187]]
dA1 = [[ 0.12913162 -0.44014127]
 [-0.14175655  0.48317296]
 [ 0.01663708 -0.05670698]]
dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167]
 [0.         0.         0.         0.        ]
 [0.05283652 0.01005865 0.01777766 0.0135308 ]]
dW2 = [[-0.39202432 -0.13325855 -0.04601089]]
db1 = [[-0.22007063]
 [ 0.        ]
 [-0.02835349]]
db2 = [[0.15187861]]
 All tests passed.

Expected output:

dA0 = [[ 0.          0.52257901]
 [ 0.         -0.3269206 ]
 [ 0.         -0.32070404]
 [ 0.         -0.74079187]]
dA1 = [[ 0.12913162 -0.44014127]
 [-0.14175655  0.48317296]
 [ 0.01663708 -0.05670698]]
dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167]
 [0.         0.         0.         0.        ]
 [0.05283652 0.01005865 0.01777766 0.0135308 ]]
dW2 = [[-0.39202432 -0.13325855 -0.04601089]]
db1 = [[-0.22007063]
 [ 0.        ]
 [-0.02835349]]
db2 = [[0.15187861]]

6.4 - Update Parameters

In this section, you’ll update the parameters of the model, using gradient descent:

$$ W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{16}$$ $$ b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{17}$$

where $\alpha$ is the learning rate.

After computing the updated parameters, store them in the parameters dictionary.

Exercise 10 - update_parameters

Implement update_parameters() to update your parameters using gradient descent.

Instructions: Update parameters using gradient descent on every $W^{[l]}$ and $b^{[l]}$ for $l = 1, 2, …, L$.

# GRADED FUNCTION: update_parameters

def update_parameters(params, grads, learning_rate):
    """
    Update parameters using gradient descent
    
    Arguments:
    params -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients, output of L_model_backward
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
                  parameters["W" + str(l)] = ... 
                  parameters["b" + str(l)] = ...
    """
    parameters = params.copy()
    L = len(parameters) // 2 # number of layers in the neural network

    # Update rule for each parameter. Use a for loop.
    #(≈ 2 lines of code)
    for l in range(L):
        # parameters["W" + str(l+1)] = ...
        # parameters["b" + str(l+1)] = ...
        # YOUR CODE STARTS HERE
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
        # YOUR CODE ENDS HERE
    return parameters
t_parameters, grads = update_parameters_test_case()
t_parameters = update_parameters(t_parameters, grads, 0.1)

print ("W1 = "+ str(t_parameters["W1"]))
print ("b1 = "+ str(t_parameters["b1"]))
print ("W2 = "+ str(t_parameters["W2"]))
print ("b2 = "+ str(t_parameters["b2"]))

update_parameters_test(update_parameters)
W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008]
 [-1.76569676 -0.80627147  0.51115557 -1.18258802]
 [-1.0535704  -0.86128581  0.68284052  2.20374577]]
b1 = [[-0.04659241]
 [-1.28888275]
 [ 0.53405496]]
W2 = [[-0.55569196  0.0354055   1.32964895]]
b2 = [[-0.84610769]]
 All tests passed.

Expected output:

W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008]
 [-1.76569676 -0.80627147  0.51115557 -1.18258802]
 [-1.0535704  -0.86128581  0.68284052  2.20374577]]
b1 = [[-0.04659241]
 [-1.28888275]
 [ 0.53405496]]
W2 = [[-0.55569196  0.0354055   1.32964895]]
b2 = [[-0.84610769]]

Congratulations!

You’ve just implemented all the functions required for building a deep neural network, including:

This was indeed a long assignment, but the next part of the assignment is easier. ;)

In the next assignment, you’ll be putting all these together to build two models:

You will in fact use these models to classify cat vs non-cat images! (Meow!) Great work and see you next time.